

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

			mm 1
		MFP3 - <i>F</i>	AQA GCE Mark Scheme 2009 January
Key to mark	scheme and abbreviations used in marki	ing	AQA GCE Mark Scheme 2009 January
М	mark is for method		
m or dM	mark is dependent on one or more M mar	rks and is for me	thod
A	mark is dependent on M or m marks and	is for accuracy	
В	mark is independent of M or m marks and	d is for method a	ind accuracy
E	mark is for explanation		
or ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
–x EE	deduct x marks for each error	G	graph
NMS	no method shown	с	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

				www.m. m
			MFP	3 - AQA GCE Mark Scheme 2009 January
MFP3				TOUT.C
Q	Solution	Marks	Total	Comments
1(a)	$y_1 = 3 + 0.2 \times \left[\frac{1^2 + 3^2}{1 + 3} \right]$	M1A1		
	= 3.5	A1	3	
(b)	$k_1 = 0.2 \times 2.5 = 0.5$	B1ft	I	PI ft from (a)
	$k_2 = 0.2 \times f(1.2, 3.5)$	M1	I	ft on (a)
	$\dots = 0.2 \times \frac{1.2^2 + 3.5^2}{1.2 + 3.5} = 0.5825(53)$	A1ft		PI condone 3dp
	$y(1.2) = y(1) + \frac{1}{2} [0.5 + 0.5825(53)]$	ml		
	= 3.54127 = 3.5413 to 4dp	A1ft	5	ft one slip If answer not to 4dp withhold this mark
-	Total	Ī	8	Ţ
2(a)	IF is $e^{\int -\frac{2}{x} dx}$	M1	l	$e^{\int \pm \frac{2}{x} dx}$
	$= e^{-2\ln x}$	A1	l	P1
	$= e^{\ln x^{-2}} = x^{-2} = \frac{1}{x^2}$	A1	3	AG Be convinced
(b)	d(v) = 1	M1	l	LHS as $d/dx(y \times IF)$
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{y}{x^2}\right) = \frac{1}{x^2}x$	A1		PI
	$\frac{y}{x^2} = \int \frac{1}{x} dx = \ln x + c$	A1		RHS Condone missing '+ c' here
	$y = x^2 \ln x + cx^2$	A1	4	
	Total		7	<u> </u>
3	Area = $\frac{1}{2} \int_{0}^{\pi} (2 + \cos \theta)^{2} \sin \theta d\theta$	M1		use of $\frac{1}{2}\int r^2 d\theta$
		B1		Correct limits
	$= \frac{1}{2} \left[-\frac{1}{3} \left(2 + \cos \theta \right)^3 \right]_0^{\pi}$	M2		Valid method to reach $k(2+\cos\theta)^3$ or $a\cos\theta+b\cos2\theta+c\cos^3\theta$ OE {SC: M1 if expands then integrates to get either $a\cos\theta + b\cos2\theta$ OE or $c\cos^3\theta$ OE in a valid way}
		A1		OE eg $-4\cos\theta - \cos 2\theta - \frac{1}{3}\cos^3\theta$
	$=\frac{1}{2}\left\{-\frac{1}{3}+\frac{1}{3}\times3^{3}\right\}=\frac{13}{3}$	A1	6	CSO
	Total		6	

MFP3 (cont)

			MFP3	B - AQA GCE Mark Scheme 2009 January
P3 (cont)	۱.			SUC
Q Q) Solution	Marks	Total	Comments
4(a)	$\int \ln x \mathrm{d}x = x \ln x - \int x \left(\frac{1}{x}\right) \mathrm{d}x$	M1		Integration by parts
	$=x \ln x - x + c$	A1	2	CSO AG
(b)	$\int_0^1 \ln x \mathrm{d}x = \frac{\lim}{a \to 0} \int_a^1 \ln x \mathrm{d}x$	M1		OE
	$= \lim_{a \to 0} \{0 - 1 - [a \ln a - a]\}$	M1		F(1) - F(a) OE
	But $\lim_{a \to 0} a \ln a = 0$	E1		Accept a general form eg $\lim_{a \to 0} a^k \ln a = 0$
	So $\int_0^1 \ln x dx = -1$	A1	4	
5(a)	$Total$ When $\theta = \pi$,	·'	0	<u> </u>
	when $\theta = \pi$, $r = \frac{2}{3 + 2\cos\pi} = \frac{2}{3 + 2(-1)} = 2$	B1	1	Correct verification
	$\frac{1}{3+2\cos\theta} = 1 \implies \cos\theta = -\frac{1}{2}$	M1		Equates r 's and attempts to solve.
	Points of intersection $\left(1, \frac{2\pi}{3}\right), \left(1, \frac{4\pi}{3}\right)$	A2,1	3	Condone eg $-2\pi/3$ for $4\pi/3$ A1 if either one point correct or two correct solutions of $\cos\theta = -0.5$
(ii)	Area $OMN = \frac{1}{2} \times 1 \times 1 \times \sin(\theta_M - \theta_N)$	M1		<u>ALT</u> $MN = 2 \times 1 \times \sin \frac{\pi}{3}$ M1
	$=\frac{1}{2}\sin\frac{2\pi}{3}=\frac{\sqrt{3}}{4}$	A1		Perp. from L to MN = $2 - 1\cos\frac{\pi}{3} = \frac{3}{2}$ M1A1
	Area $OMLN = 2 \times \frac{1}{2} \times 1 \times 2 \times \sin \frac{\pi}{3}$	M1		Area $LMN = \frac{1}{2} \times \sqrt{3} \times \frac{3}{2} = \frac{3\sqrt{3}}{4}$ A1
	Area $LMN = \sqrt{3} - \frac{\sqrt{3}}{4} = \frac{3\sqrt{3}}{4}$	A1	4	
(c)	$3r + 2r\cos\theta = 2$ $3r + 2x = 2$	M1 B1		$r\cos\theta = x$ stated or used
	3r = 2 - 2x 9(x ² + y ²) = (2 - 2x) ²	A1 M1		$3r = \pm (2 - 2x)$ $r^2 = x^2 + y^2 \text{ used}$
	$9y^2 = (2 - 2x)^2 - 9x^2$	A1	5	CSO ACF for $f(x)$ eg $9y^2 = -5x^2 - 8x + 4$
	Total	·	13	

				Scheme 2009 January mainsclot Comments Clear use of $x \rightarrow 2x$ in
P3 (con			TAL	OU.
Q Salit	Solution $e^{2x} = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \dots$	Marks	Total	Comments Clear use of $x \rightarrow 2x$ in
(")(")	$e^{-1+2x+2x} + \frac{-x}{3} + \dots$	M1		expansion of e^x
		A1	2	ACF
(ii)	2			
(11)	$\{f(x)\} = e^{2x}(1+3x)^{-3}$			
	$\{f(x)\} = e^{2x} (1+3x)^{-\frac{2}{3}}$ $(1+3x)^{-\frac{2}{3}} = 1 + \left(-\frac{2}{3}\right)(3x) + \frac{\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)(3x)^2}{2} - \frac{40}{3}x^3$			First three terms as
	$(1+3x)^{-\frac{2}{3}} = 1 + \left(-\frac{2}{3}\right)(3x) + \frac{(-3)(-3)^{(ex)}}{3} - \frac{40}{3}x^{3}$	N(1		$1 + \left(-\frac{2}{3}\right)(3x) + kx^2$ OE
		M1		$\left(\begin{array}{c} 3 \end{array} \right)^{(5x) + hx} \text{OE}$
	$= 1 - 2x + 5x^2 - \frac{40}{3}x^3$	A1		
	5			
	$\{\mathbf{f}(\mathbf{x})\approx\}$	m1		Dep on both prev MS
	$1 + 2x + 2x^{2} + \frac{4x^{3}}{3} - 2x - 4x^{2} - 4x^{3} + 5x^{2} + 10x^{3} - \frac{40x^{3}}{3}$	A1ft		Condone one sign or
				numerical slip in mult.
	$= 1 + 3x^2 - 6x^3$	A1	5	CSO AG A0 if
				binominal series not used
(b)(i)	dv = 1	M1		Chain rule
(~)(-)	$y = \ln(1 + 2\sin x) \Rightarrow \frac{dy}{dx} = \frac{1}{1 + 2\sin x} \times 2\cos x$	A1		
	$\frac{d^2 y}{dx^2} = \frac{(1+2\sin x)(-2\sin x) - 2\cos x(2\cos x)}{(1+2\sin x)^2} = \frac{-2(\sin x+2)}{(1+2\sin x)^2}$	M1		Quotient rule OE with
	$\frac{1}{dx^2} = \frac{1}{(1+2\sin x)^2} = \frac{1}{(1+2\sin x)^2}$	A1	4	<i>u</i> and <i>v</i> non constant ACF
		211	т	
(ii)	y(0) = 0, y'(0) = 2, y''(0) = -4 McL Thm.: $\{\ln(1+2\sin x)\} \approx 0 + 2x - 4\left(\frac{x^2}{2}\right) + \approx 2x - 2x^2$	M1		
	McL Thm.: { $\ln(1+2\sin x)$ } $\approx 0+2x-4\left(\frac{x^2}{2}\right)+\approx 2x-2x^2$	A1	2	CSO AG
	(2)			
(c)	$\lim_{x \to 0} \frac{1 - f(x)}{x \ln(1 + 2\sin x)} = \lim_{x \to 0} \frac{-3x^2 + 6x^3}{2x^2 - 2x^3}$	M1		Using expansions
		1711		Shing expansions
	$=\frac{\lim_{x\to 0}\frac{-3+6x}{2-2x}}$	m1		Division by x^2 stage
		1111		before taking limit.
	$=-\frac{3}{2}$			
	2 Total	A1	3 16	CSO

MFP3 - AQA GCE Mark Scheme 2009 January

1sths

Q) Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^t \{=x\}$			
		B1	ļ	OE
l	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}x} = \mathrm{e}^{-t}\frac{\mathrm{d}y}{\mathrm{d}t}$	M1	ļ	Chain rule
l	dx = dt = dx = c = dt	A1	ļ	OE eg x $\frac{dy}{dx} = \frac{dy}{dt}$
	l		ļ	$\mathbf{u}_{\lambda} \mathbf{u}_{\ell}$
Ì	$\frac{d^2 y}{dr^2} = \frac{d}{dr} \left(e^{-t} \frac{dy}{dt} \right) = \frac{dt}{dr} \frac{d}{dt} \left(e^{-t} \frac{dy}{dt} \right)$			$\frac{\mathrm{d}}{\mathrm{d}x}(\) = \frac{\mathrm{d}t}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}t}(\) \text{OE}$
l	$\left \frac{\mathrm{d}x^2}{\mathrm{d}x^2} = \frac{\mathrm{d}x}{\mathrm{d}x} \left(e^{-\frac{\mathrm{d}x}{\mathrm{d}t}} \right) = \frac{\mathrm{d}x}{\mathrm{d}x} \frac{\mathrm{d}t}{\mathrm{d}t} \left(e^{-\frac{\mathrm{d}x}{\mathrm{d}t}} \right)$	M1	ļ	$\int dx dt = \frac{1}{dx} \frac{dt}{dt}$
	$dt \left(dy d^2 y \right)$		ļ	
l	$= \frac{\mathrm{d}t}{\mathrm{d}x} \left(-\mathrm{e}^{-t} \frac{\mathrm{d}y}{\mathrm{d}t} + \mathrm{e}^{-t} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \right)$	M1	ļ	Product rule OE
			ļ	
	= $e^{-t} \left(-e^{-t} \frac{dy}{dt} + e^{-t} \frac{d^2 y}{dt^2} \right)$	A 1	ļ	OF
	$\ldots = c \left(-c \frac{dt}{dt} + c \frac{dt^2}{dt^2} \right)$	A1	ļ	OE
Ì	$\dots = x^{-2} \left(-\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \right)$			
	$\Rightarrow x^{2} \frac{d^{2} y}{dx^{2}} = \left(\frac{d^{2} y}{dt^{2}} - \frac{dy}{dt}\right)$	A 1	7	
	$\rightarrow x \frac{dx^2}{dx^2} - \left(\frac{dt^2}{dt^2} - \frac{dt}{dt}\right)$	A1	/	CSO AG Completion. Be convinced
(0)	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4x \frac{\mathrm{d}y}{\mathrm{d}x} = 10$		ļ	
			ļ	
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t}\right) - 4\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 10$	M1	ļ	
	$\left(dt^{2} dt \right) \left(dt \right)^{-10}$	1 1 1	ļ	
	$d^2 y d v$			
	$\frac{d^2 y}{dt^2} - 5\frac{dy}{dt} = 10$	A1	2	CSO AG Completion. Be convinced
			ļ	
(c)	$d^2y = dy$			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 5\frac{\mathrm{d}y}{\mathrm{d}t} = 10 (*)$		ļ	
			ļ	
	Auxl eqn $m^2 - 5m = 0$	M1	ļ	PI
l			ļ	
	m(m-5) = 0 m = 0 and 5	A1	ļ	
ļ		AI M1		ft wrong values of <i>m</i> provided 2 arb.
Ì	CF: $(y_c =)A + Be^{5t}$	1411		constants in CF. condone <i>x</i> for <i>t</i> here
Ì	PI: $(y_p =) - 2t$	B1		
Ì	GS of (*) $\{y\} = A + B e^{5t} - 2t$	B1ft	5	ft on c's CF + PI, provided PI is non-zero
l	$\sim \sim \sim () () n \cdot D = 2i$		5	and CF has two arbitrary constants
l	ļ			
(d)		M1	ļ	
l	$y'(x) = 5Bx^4 - 2x^{-1}$	A1ft	ļ	Must involve differentiating $a \ln x$ ft slip
	Using boundary conditions to find A & B	M1	ļ	
	$B = 2; A = -2; \qquad \{ y = -2 + 2x^5 - 2\ln x \}$	A1;A1ft	5	ft a slip.
	Total		19	
i	TOTAL		75	